

Off-plane concept & configuration for the X-ray Grating Spectrometer (XGS)

Randall L. McEntaffer, University of Colorado, Boulder

Off-plane concept

- Light intersects the grating quasiparallel to the grooves and disperses into a cone with half-angle γ
- γ is low, typically < 4°, so gratings must be arrayed to intersect the telescope beam

Resolution

$$R = \frac{2\theta \tan \alpha}{B}$$

B = telescope blur in radians given 15" for Con-X SXT

 $\theta = \gamma$, graze angle = 2.7°

 α = blaze in Littrow (α = β = blaze)

If α = 30° then R = 750, if α = 60° then R = 2500

Increase using subaperture

Sample the blur function with grating modules

A factor of 4 would be easily attainable and for a 30° blazed grating R = 3000 (requirement of R > 1250).

In the lab R > 200 for a 3' telescope

Grating Efficiency

40% efficiency in diffracted orders

Con-X Requirements

- Resolution
 - -R > 1250 (increased from 300)
 - R > 200 for 3' telescope
 - -15" telescope \rightarrow R > 2400
- Effective area
- A_{eff} = 1000 cm² below 1keV
 3 m² collecting area SXT
 - → 7500 cm² per telescope @ >75% reflectivity
 → 5625 cm² in one telescope
 RGS coverage 70% with 40% efficiency
 - → 1575 cm² in a single telescope

Off-plane grating development

Systems development

- JY fabricated a radial blazed master for use with the XMM flight spare
 - Panter X-ray test facility Max-Planck
- Test with Con-X Soft X-ray Telescope instead
 - Will Zhang @ Goddard

Flight configuration

- If arranged on one telescope the gratings can be arranged in octant modules that feed 4 separate CCD arrays to achieve subaperture
- If on multiple telescopes, these octants/CCD arrays can be separated and split among the telescopes

Configuration

- Can also fully cover all telescopes and actuate modules in and out of beam $\rightarrow A_{eff} > 6000 \text{ cm}^2$
- Possibly not feasible given mass constraints on XGS

